
DECENTRALIZED DRONE SYSTEMS
!

UCSB RMP
AUG 2019

Improving the Efficiency and Scalability of
Multi-Drone Coverage Systems with Decentralized Control

Adit Shah,1† Bryce L. Ferguson,2 Jason R. Marden2
1The Athenian School, 2100 Mt. Diablo Scenic Boulevard, Danville, CA 94506

2Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106
†Email address: aditshah00@gmail.com

Multi-agent systems are effective for numerous applications because they complete tasks more resiliently
and efficiently than monolithic systems. This paper focuses on a sensor-coverage problem in which a
limited fleet of sensor-equipped drones must survey an area and extract maximum information.
Applications include environmental monitoring, disaster relief, and surveillance systems. Traditionally,
these systems are implemented through a centralized approach, which can run into obstacles, including
communication and computational constraints. These limitations can be mitigated through decentralized
control algorithms, where the decision-making and navigation processes are localized to individual robots.
In this paper, we look to quantitatively compare algorithms for such decentralized systems through
simulation. We establish a baseline with a greedy algorithm, and we then compare its performance to that of
a log-linear learning approach, which adds stochasticity. Finally, we propose a method to automatically
generate a constant for this algorithm, and verify its performance.

Keywords: distributed algorithms, multi-robot systems, multi-agent systems, greedy algorithms, log-linear learning

1. INTRODUCTION
In the last decade, multi-agent systems have gained

popularity for applications which range from coordinating
autonomous cars to ease traffic and improve road safety, to
synchronizing manufacturing robots to automate an
assembly line efficiently. Drones (also known as unmanned
aerial vehicles, or UAVs) have been a major technology
focus in this area of research, as they can be applied to
delivery, emergency response, mapping, inspections, and
much more [1]. A subset of these problems involves a fleet
of drones which need to spread out across a large area [2].
For instance, a multi-drone surveillance system could be
used as either a substitute or addition to ground personnel
for the security of sensitive government and military sites.
Other examples of applications include drone networks that
map the course of disasters such as oil spills and wildfires
[1].

In this paper, we focus on a type of sensor coverage
problem where a network of drones need to survey a large
area. When the drones cannot cover the entire region, their
positions must be set to extract as much information as
possible. This involves minimizing overlapping coverage
and prioritizing areas of most importance. To do so, each
region in the area to be covered would be assigned different
weights. For instance, a surveillance system may prioritize
the boundaries of a compound, which is where intruder
would likely enter from. A system has a given number of
agents, each of which have a sensing radius. An agent is
covering a given location if it is within the range of its
sensor. The ultimate goal is to maximize the number of
regions covered, with priority given to those with higher
weight.

There are two main types of control approaches for
multi-agent systems: centralized and decentralized.

Centralized control, which is the more easily regulated
approach, is where a central node manages the location and
navigation of every drone. However, the coverage problem
is known to be NP-complete [3, 6], which means
computing the optimal locations for each agent is very
slow. A number of approximations have been developed
with varying results to improve runtimes, both for drone
swarms [4] and sensor coverage applications in general [5].
However, centralized systems have limits in efficiency and
scalability, because one node needs to maintain contact
with every drone, and is responsible for each of its
movements.

For this reason, decentralized control approaches are a
viable alternative for coverage applications. Instead of a
central controlling node, each drone has its own decision-
making capabilities to determine its optimal location and
how to navigate there. Recent research has focused on the
efficacy of this decentralized approach [6-8]. One method
of doing so prioritizes drones navigating to specific
“destination points” and navigating around obstacles to do
so [6]. Two other methods, a single robot coverage
algorithm applied on regions created through cellular
decomposition and a greedy approach applied to an area
divided into equal regions, have also been shown to be
effective through simulation [7]. In [8], this greedy
algorithm is taken further by applying a game-theoretic
approach to multi-robot systems. It utilizes log-linear
learning to add stochasticity (randomness) into the system,
where there is a certain likelihood that each agent will
execute a suboptimal action. This research also discusses
the effects of limitations on the information provided to
each agent. Finally, [9] develops navigation algorithms for
decentralized drone systems with limited information and
sensing capabilities.

DECENTRALIZED DRONE SYSTEMS
!

UCSB RMP
AUG 2019

Our main contribution in this paper is demonstrating the
effectiveness of log-linear learning for multi-agent
coverage systems. We redefine the problem setting to
combine the navigation and optimal location settings into
one problem by limiting the movements an agent can make
at each time-step. Additionally, unlike previous research,
we develop a simulation of a multi-agent system, and
compare the greedy algorithm quantitatively through this
simulation. Based on the results of these experiments, we
present a method to automatically select a temperature
constant for the log-linear learning algorithm.

In Section II, we formulate the problem mathematically,
discuss metrics for evaluating algorithms in this setting, and
introduce the greedy and log-linear learning algorithms.

II. MODEL AND ALGORITHMS
A. Problem Formulation

In this paper, we focus on improving decentralized
control approaches for a weighted coverage problem where
there is a set of decision-making agents ! ,
each of which have a sensing radius ! and a movement
radius ! . We consider a discretized map ! of a region that
needs to be covered. This map is an ! by ! matrix of cells.
The value of any cell ! represents the utility, or
importance, of covering cell ! where
! and ! .

Let ! represent the position of agent !
at time-step ! , and ! represent the positions of every
agent except for ! . Each agent is assigned a starting position
! , which is either chosen randomly or pre-
determined. At each time-step t, an agent is chosen
uniformly at random and allowed to update its position. If
! represents the Euclidean distance between two
points, each agent ! has an action set ! with agents
! such that:

 !
!

i.e. an agent can move to all cells within their movement
radius if another agent is not occupying that position. This
differs from previous literature [8, 9], but simplifies the
problem because it combines the navigation and
optimization into a single problem: determining to which
cell on the grid an agent should move at each time-step.

For each action ! , the coverage set !
consists of each cell ! .
The utility function ! of taking a particular action is
defined as follows:

!

In words, the utility of any possible action is the sum of the
utilities of every cell that is within the agent’s sensing

radius and is not already covered by another agent. The
ultimate goal is to maximize the utility of the total system,
which is the sum of the values of every cell in M covered
by an agent:

!

Because the utility values are arbitrary and vary for each
map, the algorithms will be compared with a normalized
system utility ! , which scales the utilities of the map
such that total coverage yields ! = 1:

!

This value ! can be thought of as a proportion of the
total utility that is covered, e.g. ! =0.4653 would mean
that the system achieved 46.53% of the maximum system
utility (which would occur if every cell were covered).

The overall objective is to maximize the total value of the
covered cells, utility ! , while minimizing the time it
takes for this value to converge. We now look at
decentralized algorithms for this objective.

B. The Greedy Algorithm
Greedy algorithms have been widely studied in the

context of such set-cover problems for multi-agent systems
[7,10]. In this algorithm, at each time-step t, each agent !
choses its action ! as follows:

 !

Essentially, the greedy algorithm will always choose to
make a move that maximizes its utility, and terminates
when ! . Because of these characteristics,
the greedy algorithm will get stuck in local optima, because
it only takes an action that immediately benefits the utility
function. For this reason, we only utilize the greedy
algorithm as a baseline with which to compare other
algorithms.

C. Log-Linear Learning

The log-linear learning algorithm takes a game theoretic
approach to maximizing the utility of a multi-agent system,
as described in [8]. Rather than always picking the
immediately optimal move, it choses an action
! through a probability distribution that is
based on the utility of each possible action. The probability
of agent ! taking each action ! with temperature
! is defined as follows:

 !

N = {1,2,3,...,n}
R

r M
p q

Mx,y
(x , y) ∈ X × Y

X = {1,…, p} Y = {1,…, q}
ai(t) = (xi, yi) i ∈ N

t a−i(t)
i

ai(0) = (xi, yi)

d (a1, a2)
i Ai(t)

ai ∈ Ai(t)

Ai(t) = {(x , y) ∈ X × Y ∣
d ((x , y), ai(t − 1)) ≤ r, (x , y) ∉ a−i(t − 1)} (1)

ai ∈ Ai(t) C (ai)
{(x , y) ∈ X × Y ∣ d (ai, (x , y)) ≤ R}
Ui

Ui(ai, a−i) = ∑(x,y)∈C(ai)∖⋃j≠i C(aj)
Mx,y (2)

𝒰t(a) = ∑(x,y)∈C(a(t))
Mx,y (3)

𝒰̃t(a)
𝒰̃t(a)

𝒰̃t(a) =
𝒰t(a)

∑x,y∈X×Y Mx,y
(4)

𝒰̃(t)
𝒰̃(t)

𝒰t(a)

i
ai(t + 1) ∈ Ai(t)

ai(t + 1) = arg max
ai∈Ai(t)

Ui(ai, a−i) (5)

ai(t) = ai(t + 1)

ai(t + 1) ∈ Ai(t)

i ai ∈ Ai(t)
τ > 0

pai
i (t) =

e
1
τ Ui(ai,a−i(t−1))

∑ai∈Ai
e

1
τ Ui(ai,a−i(t−1))

(6)

DECENTRALIZED DRONE SYSTEMS
!

UCSB RMP
AUG 2019

The temperature ! determines the likelihood that an agent

will make a suboptimal action, i.e. one that does not
maximize the utility function. As ! , the action with the
highest utility will always be selected, so the algorithm will
act as a greedy algorithm. As ! , the actions will be
chosen uniformly at random. Intuitively, ! can be thought of
as an “exploration” constant, where higher values of !
encourage agents to search for global optima that may be
beyond the local optima near its initial position. In our
definition of the log-linear learning algorithm, ! decays at a
constant rate, in this case ! , such that the algorithm
will eventually approach the behavior of a greedy
algorithm, and ! will stabilize.

Our definition of the log-linear learning algorithm differs
from [8] because in our approach, agents make their moves
one at a time rather than simultaneously, the action set !
is limited to cells within a movement radius ! away from
! , and ! decays rather than staying constant.

In Section III, we propose a method for improving the
results of log-linear learning, and compare the performance
of the aforementioned algorithms.

III. RESULTS AND DISCUSSION
A. Automatic Tau Generation

The log-linear learning algorithm as established in [8]
specified that there is a temperature value ! as explained
above. However, it does not discuss how to choose the
initial value, which means that manual tuning is necessary
to determine the ideal starting value. Through testing of the
impact of various variables on the ideal ! value, the factors
that matter the most were found to be the sensing radius of
each agent, the average utility value of the map, and the
starting positions of the agents. Thus, the formula for
generating the ! value if the starting positions of each agent,
! , are decided randomly, is as follows, where ! is the
average value of ! :

!

Essentially, the automatic tau generation is proportional to
the average utility for a particular agent if placed on the
map at random, which is the area an agent can cover times
the average value of each cell.

However, when ! is not randomly determined, but
the agents instead begin in consecutive cells closest to a
corner of the map, the ! value is scaled:

!

This accounts for the fact that if the agents all begin in one
corner, they have a higher probability of encountering
additional local optima. Because they are not spread out,
they will need more time-steps to discover the global
optimum. A limitation of this approach is that it requires

access to the average value of the map, although this only
needs to be computed once before the agents are deployed.

B. Algorithm Comparison
In order to quantitatively compare the greedy, log-linear

learning (LLL), and LLL with automatic ! generation, three
maps ! were generated such that they would contain
multiple local optima in addition to a global optimum.
Figure 1 shows a visualization of one of these maps, ! ,
where each cell is a different color based on its utility
value. Each algorithm was run on the three maps with the
greedy algorithm (equivalent to !), the automatically
generated ! value, and two manually ! values: one above
and one below the generated value. All of these were
simulated for two staring configurations: one where the
locations of the agents are chosen randomly at every trial,
and one where all of the agents begin either at position
! or adjacent cells closest to this corner. The model of
starting every agent at adjacent locations more accurately
represents how a fleet of drones would be deployed in
practical applications.

For concision, the trends in the algorithms’ performances
will mainly be discussed with examples from ! (Table 1).
The final resting positions of each drone in ! are
visualized in Appendix A, and data from other maps is in
Appendix B, which display similar trends to ! .

The greedy algorithm consistently has the worst
performance regardless of starting configuration, because
of its inability to overcome local optima. For instance, in
Table 1a, ! converges to 0.4257, which is lower than
any of the results for log-linear learning. However, the gap
between the greedy algorithm and log-linear learning is
much more pronounced when every agent begins in one
corner of the map. This occurs because the agents are much
more likely to encounter local optima that by definition
they are unable to cross, because the greedy algorithm only
makes moves that provide immediate benefit; this tendency

τ

τ → 0

τ → ∞
τ

τ

τ
0.997

Ui

Ai(t)
r

ai(t − 1) τ

τ

τ

τ
Ai(0) M

M

τ =
1
2

π R2 ⋅ M (7)

Ai(0)

τ

τ = π R2 ⋅ M (8)

τ
Mk

M1

τ = 0
τ τ

(1,1)

M1

M1

M1

𝒰̃t(a)

FIG. 1. A visualization of map ! , a 20x20 matrix. ! is at the
top left corner. The color of each square represents the utility of
that cell ! , as illustrated in the scale shown on the right.

M1 M1
1,1

Mx,y

DECENTRALIZED DRONE SYSTEMS
!

UCSB RMP
AUG 2019

is visualized in Appendix A. For this reason, the greedy
approach only reaches ! , which is much
lower than the result for the greedy algorithm when placed
at random. However, the greedy algorithm has one
consistent advantage: the number of time-steps ! that it
takes for ! to stabilize, which is defined as the point
after which ! stays within 10% of the final utility. On
average, it took 54.7 and 110.7 time-steps to stabilize for
the random and fixed starting positions respectively,
whereas the log-linear algorithm takes 5 to 15 times as long
to do so.

 Although the log-linear algorithm algorithm takes much
longer to stabilize than the greedy algorithm, it can reach
significantly higher utility values. In Table 1a, the highest
log-linear learning result performs 4.5% better than the
greedy algorithm, and in Table 1b, this improvement grows
to 16%. However, there is significant variance in results
based on the ! value. In both starting configurations across
all maps (Table 1, Appendix A) the automatically-generated
value reaches a higher utility value than the lowest value,
with a comparable or higher number of time-steps. This is
an expected result, because a system with a higher ! value
has a longer “exploration phase” where agents are very
likely to make suboptimal moves. This makes such a
system more likely to reach a global optimum while also
increasing the time to stabilization. Similarly, systems with
! values higher than the automatically-generated value take
more time to stabilize because of their longer exploration
phase.

However, the final ! does not improve with ! values
higher than the automatically-generated value. This trend is
not only seen in Tables 1 and 2, but throughout the data
collected (Appendix B). This seems to contradict an
intuitive understanding of log-linear learning which
suggests that higher ! will help a system discover the global
optimum, albeit with more time-steps. This behavior could
be occurring because at a ! value above a certain threshold,
the moves of the agents are almost completely at random,
which means that on average, agents will remain at their
starting locations. Additionally, even if agents do find
optimal positions, they are unlikely to remain there because
the algorithm is not considering the utilities at all at high
temperature values. Both of these patterns were empirically
observed; however further study is necessary to definitively
determine the cause of this unexpected outcome.

IV. CONCLUSION AND FUTURE WORK
In this paper, we formulate a modified version of a

decentralized multi-agent coverage problem, where the
agents do not have complete knowledge of the map, and
they are restricted to movements in their immediate
vicinity; this system model more closely mirrors the real-
life applications of such multi-drone coverage systems.
Multiple control approaches for this problem settings are
discussed, including a greedy approach and a log-linear
approach. By simulating this multi-robot system, we
demonstrate that the log-linear learning approach has
superior performance than the greedy algorithm. We
automate the generation of a temperature constant for this
algorithm, which achieves optimal performance and
eliminates the need for manual parameter tuning, allowing
the algorithm to be deployed in different environments
without needing to validate it for each one.

In the future, the algorithms could be tested on more
maps with different characteristics, additional starting
configurations, and the impacts of sensing radius,
movement radius, number of agents, distance from other
agents, and various other variables could be evaluated.
Obstacles that the agents must navigate around could be
added to the maps. The formula for generating the ! values
could take additional variables into account, including those
listed above. Finally, these algorithms could be verified on
physical multi-robot systems.

𝒰̃t(a) = 0.3900

t
𝒰t(a)

𝒰t(a)

τ

τ

τ

𝒰̃t(a) τ

τ

τ

τ

Table 1. Performance metrics for the greedy and log-linear
learning algorithms (with varying ! values) on ! , including
number of time-steps to stabilization, the final utility value, and
the normalized final utility value. (These simulations were run
with ! agents, sensing radius ! and moving radius
! . Three trials per setting were conducted and the average
values of ! , ! , and ! are displayed. For (a), a random
starting position was used, and for (b) the agents began in one
corner.

τ M1

n = 6 R = 5
r = 1

t 𝒰t(a) 𝒰̃t(a)

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

t Ut(a) Ũt(a)

Greedy t = 0 54.7 2082.3 0.4257

t = 40 570.0 2110.3 0.4315

LLL t = 96 (auto) 675.3 2177.0 0.4451

t = 130 700.0 2131.7 0.4358

t Ut(a) Ũt(a)

Greedy t = 0 110.7 1907.7 0.3900

t = 153 771.0 2174.7 0.4446

LLL t = 192 (auto) 753.3 2215.0 0.4529

t = 250 1125.3 2141.0 0.4377

1

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

t Ut(a) Ũt(a)

Greedy t = 0 54.7 2082.3 0.4257

t = 40 570.0 2110.3 0.4315

LLL t = 96 (auto) 675.3 2177.0 0.4451

t = 130 700.0 2131.7 0.4358

t Ut(a) Ũt(a)

Greedy t = 0 110.7 1907.7 0.3900

t = 153 771.0 2174.7 0.4446

LLL t = 192 (auto) 753.3 2215.0 0.4529

t = 250 1125.3 2141.0 0.4377

1

Table 1b: Starting position in one corner

Table 1a: Random starting positions

FIG. 2. Sample graphs of ! (vertical axis) over ! (horizontal
axis) for ! for each algorithm. (a) shows the random starting
position, (b) shows the corner starting position.

𝒰t(a) t
M1

(b)

! Greedy
! !
! ! (auto)
! !

τ = 153
τ = 192
τ = 250(a)

! Greedy
! !
! ! (auto)
! !

τ = 40
τ = 96
τ = 130

DECENTRALIZED DRONE SYSTEMS
!

UCSB RMP
AUG 2019

V. ACKNOWLEDGEMENTS
The first author would like to thank lab peers Siddharth

Ganesan and Nischal Sinha for their support throughout the
program. We would like to acknowledge Center for
Computation and Dynamical Control for access to their
resources and support during this research. Finally, we
thank Dr. Lina Kim, Dr. Michael Hughes, and A S M
Iftekhar from the Research Mentorship Program, and the
University of California, Santa Barbara, for the research
opportunity.

REFERENCES

[1] G. Chmaj and H. Selvaraj, “Distributed Processing
Applications for UAV/drones: A Survey,” Progress in
Systems Engineering. Advances in Intelligent Systems
and Computing, vol. 366, pp. 449–454, 2015.

[2] E. Galceran and M. Carreras, “A survey on coverage
path planning for robotics,” Robotics and Autonomous
Systems, vol. 61, no. 12, pp. 1258–1276, Dec. 2013.

[3] S. Khuller, A. Moss, and J. (S. Naor, “The budgeted
maximum coverage problem,” Information Processing
Letters, vol. 70, no. 1, pp. 39–45, Apr. 1999.

[4] K. Loayza, P. Lucas, and E. Pelaez, “A centralized
control of movements using a collision avoidance
algorithm for a swarm of autonomous agents,” 2017
IEEE Second Ecuador Technical Chapters Meeting
(ETCM), 2017.

[5] W. Wu, Z. Zhang, W. Lee, and D.-Z. Du, “Optimal
Sensor Coverage,” University of Texas, Dallas, https://
www.utdallas.edu/~dzdu/cs7301c/main.pdf.

[6] C. Zhai and Y. Hong, “Distributed coverage control of
multi-agent systems using navigation functions,” 2013
10th IEEE International Conference on Control and
Automation (ICCA), Jun. 2013.

[7] N. Karapetyan, K. Benson, C. Mckinney, P. Taslakian,
and I. Rekleitis, “Efficient multi-robot coverage of a
known environment,” 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
Dec. 2017.

[8] J. R. Marden and J. S. Shamma, “Revisiting log-linear
learning: Asynchrony, completeness and payoff-based
implementation,” Games and Economic Behavior, vol.
75, no. 2, pp. 788–808, Jul. 2012.

[9] R. Maeda, T. Endo, and F. Matsuno, “Decentralized
Navigation for Heterogeneous Swarm Robots With
Limited Field of View,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 904–911, Jan.
2017.

[10] D. Grimsman, M. S. Ali, J. P. Hespanha, and J. R.
Marden, “The Impact of Information in Greedy
Submodular Maximization,” IEEE Transactions on
Control of Network Systems, Dec. 2018.

APPENDIX

A. Drone Position Visualizations on ! M1

FIG. A1. Visualization of drone resting positions for each
algorithm in the random starting configuration. Darker regions
represent higher utility, agents are represented by colored dots,
and sensing radii are represented by a circle around each agent. (a)
shows the result of the greedy algorithm, (b) shows ! , (c)
shows ! (automatically generated) and (d) shows ! .

τ = 40
τ = 96 τ = 130

(a) (b)

(c) (d)

(a) (b)

(c) (d)

FIG. A2. Visualization of drone resting positions for each
algorithm in the random starting configuration. Darker regions
represent higher utility, agents are represented by colored dots,
and sensing radii are represented by a circle around each agent. (a)
shows the result of the greedy algorithm, (b) shows ! , (c)
shows ! (automatically generated) and (d) shows ! .

τ = 153
τ = 192 τ = 250

https://www.utdallas.edu/~dzdu/cs7301c/main.pdf
https://www.utdallas.edu/~dzdu/cs7301c/main.pdf

DECENTRALIZED DRONE SYSTEMS
!

UCSB RMP
AUG 2019

B. Additional Maps: Visualization and Data

1. Map ! 2. Map ! M2 M3

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

1

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

1

Table B1. Performance metrics for the greedy and log-linear
learning algorithms (with varying ! values) on ! , including
number of time-steps to stabilization, the final utility value, and
the normalized final utility value. These simulations were run
with ! agents, sensing radius ! and moving radius
! . Three trials for each setting were conducted, and the
average values of ! , ! , and ! are displayed. For (a), a
random starting position was used, and for (b) the agents began
in one corner.

τ M2

n = 6 R = 6
r = 5

t 𝒰t(a) 𝒰̃t(a)

Table B1b: Starting position in one corner

Table B1a: Random starting positions

FIG. B1. A visualization of map ! , a 50x50 matrix. M2 FIG. B2. A visualization of map ! , a 30x30 matrix. M3

t Ut(a) Ũt(a)

Greedy t = 0 61.7 101197.7 0.3203

t = 4500 564.7 110268.3 0.3490

LLL t = 17368 (auto) 700.0 110334.0 0.3492

t = 25000 1034.7 106702.3 0.3486

2

Table B2. Performance metrics for the greedy and log-linear
learning algorithms (with varying ! values) on ! , including
number of time-steps to stabilization, the final utility value, and
the normalized final utility value. These simulations were run
with ! agents, sensing radius ! and moving radius
! . Three trials for each setting were conducted, and the
average values of ! , ! , and ! are displayed. For (a), a
random starting position was used, and for (b) the agents began
in one corner.

τ M3

n = 4 R = 4
r = 3

t Ut(a) 𝒰̃t(a)

Table B2b: Starting position in one corner

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

t Ut(a) Ũt(a)

Greedy t = 0 54.7 2082.3 0.4257

t = 40 570.0 2110.3 0.4315

LLL t = 96 (auto) 675.3 2177.0 0.4451

t = 130 700.0 2131.7 0.4358

t Ut(a) Ũt(a)

Greedy t = 0 110.7 1907.7 0.3900

t = 153 771.0 2174.7 0.4446

LLL t = 192 (auto) 753.3 2215.0 0.4529

t = 250 1125.3 2141.0 0.4377

t Ut(a) Ũt(a)

Greedy t = 0 23.0 104335.7 0.3302

t = 3500 624.3 107473.0 0.3401

LLL t = 8819 (auto) 672.3 110314.0 0.3491

t = 15000 971.0 110151.3 0.3486

1

Table B2a: Random starting positions

