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Multi-agent systems are effective for numerous applications because they complete tasks more resiliently 
and efficiently than monolithic systems. This paper focuses on a sensor-coverage problem in which a 
limited fleet of sensor-equipped drones must survey an area and extract maximum information. 
Applications include environmental monitoring, disaster relief, and surveillance systems. Traditionally, 
these systems are implemented through a centralized approach, which can run into obstacles, including 
communication and computational constraints. These limitations can be mitigated through decentralized 
control algorithms, where the decision-making and navigation processes are localized to individual robots. 
In this paper, we look to quantitatively compare algorithms for such decentralized systems through 
simulation. We establish a baseline with a greedy algorithm, and we then compare its performance to that of 
a log-linear learning approach, which adds stochasticity. Finally, we propose a method to automatically 
generate a constant for this algorithm, and verify its performance. 
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1. INTRODUCTION 
In the last decade, multi-agent systems have gained 

popularity for applications which range from coordinating 
autonomous cars to ease traffic and improve road safety, to 
synchronizing manufacturing robots to automate an 
assembly line efficiently. Drones (also known as unmanned 
aerial vehicles, or UAVs) have been a major technology 
focus in this area of research, as they can be applied to 
delivery, emergency response, mapping, inspections, and 
much more [1]. A subset of these problems involves a fleet 
of drones which need to spread out across a large area [2]. 
For instance, a multi-drone surveillance system could be 
used as either a substitute or addition to ground personnel 
for the security of sensitive government and military sites. 
Other examples of applications include drone networks that 
map the course of disasters such as oil spills and wildfires 
[1].   

In this paper, we focus on a type of sensor coverage 
problem where a network of drones need to survey a large 
area. When the drones cannot cover the entire region, their 
positions must be set to extract as much information as 
possible. This involves minimizing overlapping coverage 
and prioritizing areas of most importance. To do so, each  
region in the area to be covered would be assigned different 
weights. For instance, a surveillance system may prioritize 
the boundaries of a compound, which is where intruder 
would likely enter from. A system has a given number of 
agents, each of which have a sensing radius. An agent is 
covering a given location if it is within the range of its 
sensor. The ultimate goal is to maximize the number of 
regions covered, with priority given to those with higher 
weight. 

There are two main types of control approaches for 
multi-agent systems: centralized and decentralized. 

Centralized control, which is the more easily regulated 
approach, is where a central node manages the location and 
navigation of every drone. However, the coverage problem 
is known to be NP-complete [3, 6], which means 
computing the optimal locations for each agent is very 
slow. A number of approximations have been developed 
with varying results to improve runtimes, both for drone 
swarms [4] and sensor coverage applications in general [5]. 
However, centralized systems have limits in efficiency and 
scalability, because one node needs to maintain contact 
with every drone, and is responsible for each of its 
movements. 

For this reason, decentralized control approaches are a 
viable alternative for coverage applications. Instead of a 
central controlling node, each drone has its own decision-
making capabilities to determine its optimal location and 
how to navigate there. Recent research has focused on the 
efficacy of this decentralized approach [6-8]. One method 
of doing so prioritizes drones navigating to specific 
“destination points” and navigating around obstacles to do 
so [6]. Two other methods, a single robot coverage 
algorithm applied on regions created through cellular 
decomposition and a greedy approach applied to an area 
divided into equal regions, have also been shown to be 
effective through simulation [7]. In [8], this greedy 
algorithm is taken further by applying a game-theoretic 
approach to multi-robot systems. It utilizes log-linear 
learning to add stochasticity (randomness) into the system, 
where there is a certain likelihood that each agent will 
execute a suboptimal action. This research also discusses 
the effects of limitations on the information provided to 
each agent. Finally, [9] develops navigation algorithms for 
decentralized drone systems with limited information and 
sensing capabilities. 
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Our main contribution in this paper is demonstrating the 
effectiveness of log-linear learning for multi-agent 
coverage systems. We redefine the problem setting to 
combine the navigation and optimal location settings into 
one problem by limiting the movements an agent can make 
at each time-step. Additionally, unlike previous research, 
we develop a simulation of a multi-agent system, and 
compare the greedy algorithm quantitatively through this 
simulation. Based on the results of these experiments, we 
present a method to automatically select a temperature 
constant for the log-linear learning algorithm.  

In Section II, we formulate the problem mathematically,  
discuss metrics for evaluating algorithms in this setting, and 
introduce the greedy and log-linear learning algorithms. 

II. MODEL AND ALGORITHMS 
A. Problem Formulation 

In this paper, we focus on improving decentralized 
control approaches for a weighted coverage problem where 
there is a set of decision-making agents ! , 
each of which have a sensing radius !  and a movement 
radius ! . We consider a discretized map !  of a region that 
needs to be covered. This map is an !  by !  matrix of cells. 
The value of any cell !  represents the utility, or 
importance, of covering cell ! where 
!  and ! . 

Let !  represent the position of agent !  
at time-step ! , and !  represent the positions of every 
agent except for ! . Each agent is assigned a starting position 
! , which is either chosen randomly or pre-
determined. At each time-step t, an agent is chosen 
uniformly at random and allowed to update its position. If 
!  represents the Euclidean distance between two 
points, each agent !  has an action set !  with agents 
!  such that: 

 !   
!  

i.e. an agent can move to all cells within their movement 
radius if another agent is not occupying that position. This 
differs from previous literature [8, 9], but simplifies the 
problem because it combines the navigation and 
optimization into a single problem: determining to which 
cell on the grid an agent should move at each time-step. 

For each action ! , the coverage set !  
consists of each cell ! . 
The utility function !  of taking a particular action is 
defined as follows:  

!  

In words, the utility of any possible action is the sum of the 
utilities of every cell that is within the agent’s sensing 

radius and is not already covered by another agent. The 
ultimate goal is to maximize the utility of the total system, 
which is the sum of the values of every cell in M covered 
by an agent: 

 
!  

Because the utility values are arbitrary and vary for each 
map, the algorithms will be compared with a normalized 
system utility ! , which scales the utilities of the map 
such that total coverage yields !  = 1: 

!  

This value !  can be thought of as a proportion of the 
total utility that is covered, e.g. ! =0.4653 would mean 
that the system achieved 46.53% of the maximum system 
utility (which would occur if every cell were covered). 

The overall objective is to maximize the total value of the 
covered cells, utility ! , while minimizing the time it 
takes for this value to converge. We now look at 
decentralized algorithms for this objective. 

B. The Greedy Algorithm 
Greedy algorithms have been widely studied in the 

context of such set-cover problems for multi-agent systems 
[7,10]. In this algorithm, at each time-step t, each agent !  
choses its action !  as follows: 

 !  

Essentially, the greedy algorithm will always choose to 
make a move that maximizes its utility, and terminates 
when ! . Because of these characteristics, 
the greedy algorithm will get stuck in local optima, because 
it only takes an action that immediately benefits the utility 
function. For this reason, we only utilize the greedy 
algorithm as a baseline with which to compare other 
algorithms. 
   
C. Log-Linear Learning 

The log-linear learning algorithm takes a game theoretic 
approach to maximizing the utility of a multi-agent system, 
as described in [8]. Rather than always picking the 
immediately optimal move, it choses an action 
!  through a probability distribution that is 
based on the utility of each possible action. The probability 
of agent !  taking each action !  with temperature 
!  is defined as follows: 

 !  

N = {1,2,3,...,n}
R

r M
p q

Mx,y
(x , y) ∈ X × Y

X = {1,…, p} Y = {1,…, q}
ai(t ) = (xi, yi) i ∈ N

t a−i(t )
i

ai(0) = (xi, yi)

d (a1, a2)
i Ai(t )

ai ∈ Ai(t )

Ai(t ) = {(x , y) ∈ X × Y ∣
d ((x , y), ai(t − 1)) ≤ r, (x , y) ∉ a−i(t − 1)} (1)

ai ∈ Ai(t ) C (ai)
{(x , y) ∈ X × Y ∣ d (ai, (x , y)) ≤ R}
Ui

Ui(ai, a−i) = ∑(x,y)∈C(ai)∖⋃j≠i C(aj)
Mx,y (2)

𝒰t(a) = ∑(x,y)∈C(a(t))
Mx,y (3)

𝒰̃t(a)
𝒰̃t(a)

𝒰̃t(a) =
𝒰t(a)

∑x,y∈X×Y Mx,y
(4)

𝒰̃(t )
𝒰̃(t )

𝒰t(a)

i
ai(t + 1) ∈ Ai(t )

ai(t + 1) = arg max
ai∈Ai(t)

Ui(ai, a−i) (5)

ai(t ) = ai(t + 1)

ai(t + 1) ∈ Ai(t )

i ai ∈ Ai(t )
τ > 0

pai
i (t ) =

e
1
τ Ui(ai,a−i(t−1))

∑ai∈Ai
e

1
τ Ui(ai,a−i(t−1))

(6)
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The temperature !  determines the likelihood that an agent 

will make a suboptimal action, i.e. one that does not 
maximize the utility function. As ! , the action with the 
highest utility will always be selected, so the algorithm will 
act as a greedy algorithm.  As ! , the actions will be 
chosen uniformly at random. Intuitively, !  can be thought of 
as an “exploration” constant, where higher values of !  
encourage agents to search for global optima that may be 
beyond the local optima near its initial position. In our 
definition of the log-linear learning algorithm, !  decays at a 
constant rate, in this case ! , such that the algorithm 
will eventually approach the behavior of a greedy 
algorithm, and !  will stabilize. 

Our definition of the log-linear learning algorithm differs 
from [8] because in our approach, agents make their moves 
one at a time rather than simultaneously, the action set !  
is limited to cells within a movement radius !  away from 
! , and !  decays rather than staying constant. 

In Section III, we propose a method for improving the 
results of log-linear learning, and compare the performance 
of the aforementioned algorithms. 

III. RESULTS AND DISCUSSION 
A. Automatic Tau Generation 

The log-linear learning algorithm as established in [8] 
specified that there is a temperature value !  as explained 
above. However, it does not discuss how to choose the 
initial value, which means that manual tuning is necessary 
to determine the ideal starting value. Through testing of the 
impact of various variables on the ideal !  value, the factors 
that matter the most were found to be the sensing radius of 
each agent, the average utility value of the map, and the 
starting positions of the agents. Thus, the formula for 
generating the !  value if the starting positions of each agent, 
! , are decided randomly, is as follows, where !  is the 
average value of ! : 

!   

Essentially, the automatic tau generation is proportional to 
the average utility for a particular agent if placed on the 
map at random, which is the area an agent can cover times 
the average value of each cell.  

However, when !  is not randomly determined, but 
the agents instead begin in consecutive cells closest to a 
corner of the map, the !  value is scaled: 

!  

This accounts for the fact that if the agents all begin in one 
corner, they have a higher probability of encountering 
additional local optima. Because they are not spread out, 
they will need more time-steps to discover the global 
optimum. A limitation of this approach is that it requires 

access to the average value of the map, although this only 
needs to be computed once before the agents are deployed. 

B. Algorithm Comparison  
In order to quantitatively compare the greedy, log-linear 

learning (LLL), and LLL with automatic !  generation, three 
maps !  were generated such that they would contain 
multiple local optima in addition to a global optimum. 
Figure 1 shows a visualization of one of these maps, ! , 
where each cell is a different color based on its utility 
value. Each algorithm was run on the three maps with the 
greedy algorithm (equivalent to ! ), the automatically 
generated !  value, and two manually !  values: one above 
and one below the generated value. All of these were 
simulated for two staring configurations: one where the 
locations of the agents are chosen randomly at every trial, 
and one where all of the agents begin either at position 
!  or adjacent cells closest to this corner. The model of 
starting every agent at adjacent locations more accurately 
represents how a fleet of drones would be deployed in 
practical applications. 

For concision, the trends in the algorithms’ performances 
will mainly be discussed with examples from !  (Table 1). 
The final resting positions of each drone in ! are 
visualized in Appendix A, and data from other maps is in 
Appendix B, which display similar trends to ! .  

The greedy algorithm consistently has the worst 
performance regardless of starting configuration, because 
of its inability to overcome local optima. For instance, in 
Table 1a, !  converges to 0.4257, which is lower than 
any of the results for log-linear learning. However, the gap 
between the greedy algorithm and log-linear learning is 
much more pronounced when every agent begins in one 
corner of the map. This occurs because the agents are much 
more likely to encounter local optima that by definition 
they are unable to cross, because the greedy algorithm only 
makes moves that provide immediate benefit; this tendency 

τ

τ → 0

τ → ∞
τ

τ

τ
0.997

Ui

Ai(t )
r

ai(t − 1) τ

τ

τ

τ
Ai(0) M

M

τ =
1
2

π R2 ⋅ M (7)

Ai(0)

τ

τ = π R2 ⋅ M (8)

τ
Mk

M1

τ = 0
τ τ

(1,1)

M1

M1

M1

𝒰̃t(a)

FIG. 1.  A visualization of map ! , a 20x20 matrix. !  is at the 
top left corner. The color of each square represents the utility of 
that  cell ! , as illustrated in the scale shown on the right. 

M1 M1
1,1

Mx,y
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is visualized in Appendix A. For this reason, the greedy 
approach only reaches ! , which is much 
lower than the result for the greedy algorithm when placed 
at random. However, the greedy algorithm has one 
consistent advantage: the number of time-steps !  that it 
takes for !  to stabilize, which is defined as the point 
after which  !  stays within 10% of the final utility. On 
average, it took 54.7 and 110.7 time-steps to stabilize for 
the random and fixed starting positions respectively, 
whereas the log-linear algorithm takes 5 to 15 times as long 
to do so. 

 Although the log-linear algorithm algorithm takes much 
longer to stabilize than the greedy algorithm, it can reach 
significantly higher utility values. In Table 1a, the highest 
log-linear learning result performs 4.5% better than the 
greedy algorithm, and in Table 1b, this improvement grows 
to 16%. However, there is significant variance in results 
based on the !  value. In both starting configurations across 
all maps (Table 1, Appendix A) the automatically-generated 
value reaches a higher utility value than the lowest value, 
with a comparable or higher number of time-steps. This is 
an expected result, because a system with a higher !  value 
has a longer “exploration phase” where agents are very 
likely to make suboptimal moves. This makes such a 
system more likely to reach a global optimum while also 
increasing the time to stabilization. Similarly, systems with 
!  values higher than the automatically-generated value take 
more time to stabilize because of their longer exploration 
phase.  

However, the final !  does not improve with !  values 
higher than the automatically-generated value. This trend is 
not only seen in Tables 1 and 2, but throughout the data 
collected (Appendix B). This seems to contradict an 
intuitive understanding of log-linear learning which 
suggests that higher !  will help a system discover the global 
optimum, albeit with more time-steps. This behavior could 
be occurring because at a !  value above a certain threshold, 
the moves of the agents are almost completely at random, 
which means that on average, agents will remain at their 
starting locations. Additionally, even if agents do find 
optimal positions, they are unlikely to remain there because 
the algorithm is not considering the utilities at all at high 
temperature values. Both of these patterns were empirically 
observed; however further study is necessary to definitively 
determine the cause of this unexpected outcome.  

IV. CONCLUSION AND FUTURE WORK 
In this paper, we formulate a modified version of a 

decentralized multi-agent coverage problem, where the 
agents do not have complete knowledge of the map, and 
they are restricted to movements in their immediate 
vicinity; this system model more closely mirrors the real-
life applications of such multi-drone coverage systems.  
Multiple control approaches for this problem settings are 
discussed, including a greedy approach and a log-linear 
approach. By simulating this multi-robot system, we  
demonstrate that the log-linear learning approach has 
superior performance than the greedy algorithm. We 
automate the generation of a temperature constant for this 
algorithm, which achieves optimal performance and 
eliminates the need for manual parameter tuning, allowing 
the algorithm to be deployed in different environments 
without needing to validate it for each one. 

In the future, the algorithms could be tested on more 
maps with different characteristics, additional starting 
configurations, and the impacts of sensing radius, 
movement radius, number of agents, distance from other 
agents, and various other variables could be evaluated. 
Obstacles that the agents must navigate around could be 
added to the maps. The formula for generating the !  values 
could take additional variables into account, including those 
listed above. Finally, these algorithms could be verified on 
physical multi-robot systems.  

𝒰̃t(a) = 0.3900

t
𝒰t(a)

𝒰t(a)

τ

τ

τ

𝒰̃t(a) τ

τ

τ

τ

Table 1. Performance metrics for the greedy and log-linear 
learning algorithms (with varying !  values) on ! , including 
number of time-steps to stabilization, the final utility value, and 
the normalized final utility value. (These simulations were run 
with !  agents, sensing radius !  and moving radius 
! . Three trials per setting were conducted  and the average 
values of ! , ! , and !  are displayed. For (a), a random 
starting position was used, and for (b) the agents began in one 
corner.

τ M1

n = 6 R = 5
r = 1

t 𝒰t(a) 𝒰̃t(a)

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

t Ut(a) Ũt(a)

Greedy t = 0 54.7 2082.3 0.4257

t = 40 570.0 2110.3 0.4315

LLL t = 96 (auto) 675.3 2177.0 0.4451

t = 130 700.0 2131.7 0.4358

t Ut(a) Ũt(a)

Greedy t = 0 110.7 1907.7 0.3900

t = 153 771.0 2174.7 0.4446

LLL t = 192 (auto) 753.3 2215.0 0.4529

t = 250 1125.3 2141.0 0.4377

1

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

t Ut(a) Ũt(a)

Greedy t = 0 54.7 2082.3 0.4257

t = 40 570.0 2110.3 0.4315

LLL t = 96 (auto) 675.3 2177.0 0.4451

t = 130 700.0 2131.7 0.4358

t Ut(a) Ũt(a)

Greedy t = 0 110.7 1907.7 0.3900

t = 153 771.0 2174.7 0.4446

LLL t = 192 (auto) 753.3 2215.0 0.4529

t = 250 1125.3 2141.0 0.4377

1

Table 1b: Starting position in one corner

Table 1a: Random starting positions

FIG. 2. Sample graphs of !  (vertical axis) over !  (horizontal 
axis) for !  for each algorithm. (a) shows the random starting 
position, (b) shows the corner starting position.  

𝒰t(a) t
M1

(b)

!  Greedy 
!  !  
!  !  (auto) 
!  !

τ = 153
τ = 192
τ = 250(a)

!  Greedy 
!  !  
!  !  (auto) 
!  !

τ = 40
τ = 96
τ = 130
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APPENDIX 

A. Drone Position Visualizations on !  M1

FIG. A1. Visualization of drone resting positions for each 
algorithm in the random starting configuration. Darker regions 
represent higher utility, agents are represented by colored dots, 
and sensing radii are represented by a circle around each agent. (a) 
shows the result of the greedy algorithm, (b) shows ! , (c) 
shows !  (automatically generated) and (d) shows ! .

τ = 40
τ = 96 τ = 130

(a) (b)

(c) (d)

(a) (b)

(c) (d)

FIG. A2. Visualization of drone resting positions for each 
algorithm in the random starting configuration. Darker regions 
represent higher utility, agents are represented by colored dots, 
and sensing radii are represented by a circle around each agent. (a) 
shows the result of the greedy algorithm, (b) shows ! , (c) 
shows !  (automatically generated) and (d) shows ! .  

τ = 153
τ = 192 τ = 250

https://www.utdallas.edu/~dzdu/cs7301c/main.pdf
https://www.utdallas.edu/~dzdu/cs7301c/main.pdf
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B. Additional Maps: Visualization and Data 

1. Map !  2. Map !  M2 M3

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

1

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

1

Table B1. Performance metrics for the greedy and log-linear 
learning algorithms (with varying !  values) on ! , including 
number of time-steps to stabilization, the final utility value, and 
the normalized final utility value. These simulations were run 
with !  agents, sensing radius !  and moving radius 
! . Three trials for each setting were conducted, and the 
average values of ! , ! , and !  are displayed. For (a), a 
random starting position was used, and for (b) the agents began 
in one corner.

τ M2

n = 6 R = 6
r = 5

t 𝒰t(a) 𝒰̃t(a)

Table B1b: Starting position in one corner

Table B1a: Random starting positions

FIG. B1.  A visualization of map ! , a 50x50 matrix. M2 FIG. B2.  A visualization of map ! , a 30x30 matrix. M3

t Ut(a) Ũt(a)

Greedy t = 0 61.7 101197.7 0.3203

t = 4500 564.7 110268.3 0.3490

LLL t = 17368 (auto) 700.0 110334.0 0.3492

t = 25000 1034.7 106702.3 0.3486

2

Table B2. Performance metrics for the greedy and log-linear 
learning algorithms (with varying !  values) on ! , including 
number of time-steps to stabilization, the final utility value, and 
the normalized final utility value. These simulations were run 
with !  agents, sensing radius !  and moving radius 
! . Three trials for each setting were conducted, and the 
average values of ! , ! , and !  are displayed. For (a), a 
random starting position was used, and for (b) the agents began 
in one corner.

τ M3

n = 4 R = 4
r = 3

t Ut(a) 𝒰̃t(a)

Table B2b: Starting position in one corner

t U (t) Ũ (t)

Greedy t = 0 40.7 15195.7 0.3680

t = 350 673.7 15404.0 0.3730

LLL t = 933 (auto) 672.3 15658.7 0.3792

t = 1700 971.0 15523.0 0.3759

t U (t) Ũ (t)

Greedy t = 0 70.7 13325.3 0.3227

t = 700 779.0 13931.0 0.3373

LLL t = 1867 (auto) 953.7 15340.0 0.3715

t = 3000 1130.0 15286.0 0.3702

t Ut(a) Ũt(a)

Greedy t = 0 54.7 2082.3 0.4257

t = 40 570.0 2110.3 0.4315

LLL t = 96 (auto) 675.3 2177.0 0.4451

t = 130 700.0 2131.7 0.4358

t Ut(a) Ũt(a)

Greedy t = 0 110.7 1907.7 0.3900

t = 153 771.0 2174.7 0.4446

LLL t = 192 (auto) 753.3 2215.0 0.4529

t = 250 1125.3 2141.0 0.4377

t Ut(a) Ũt(a)

Greedy t = 0 23.0 104335.7 0.3302

t = 3500 624.3 107473.0 0.3401

LLL t = 8819 (auto) 672.3 110314.0 0.3491

t = 15000 971.0 110151.3 0.3486

1

Table B2a: Random starting positions


